4,880 research outputs found

    Electromagnetic Corrections to Charged Pion Scattering at Low Energies

    Get PDF
    The electromagnetic corrections to the low energy scattering amplitude involving charged pions only are investigated at leading and next-to-leading orders in the two-flavour chiral expansion. As an application, the corresponding variation in the strong 2S−2P2S-2P level shift is evaluated. The relative variation is of the order of 5%.Comment: LateX2e, 10 pages, 2 figure

    An example of resonance saturation at one loop

    Get PDF
    We argue that the large-Nc expansion of QCD can be used to treat a Lagrangian of resonances in a perturbative way. As an illustration of this we compute the L_10 coupling of the Chiral Lagrangian by integrating out resonance fields at one loop. Given a Lagrangian and a renormalization scheme, this is how in principle one can answer in a concrete and unambiguous manner questions such as at what scale resonance saturation takes place.Comment: 9 pages, 5 figures. Enlarged discussion, results unchanged. To be published in Phys. Rev.

    On the holomorphic factorization for superconformal fields

    Full text link
    For a generic value of the central charge, we prove the holomorphic factorization of partition functions for free superconformal fields which are defined on a compact Riemann surface without boundary. The partition functions are viewed as functionals of the Beltrami coefficients and their fermionic partners which variables parametrize superconformal classes of metrics.Comment: 5 pages, LATEX, MPI-Ph/92-7

    Isospin breaking in the phases of the Ke4 form factors

    Full text link
    Isospin breaking in the Kl4 form factors induced by the difference between charged and neutral pion masses is studied. Starting from suitably subtracted dispersion representations, the form factors are constructed in an iterative way up to two loops in the low-energy expansion by implementing analyticity, crossing, and unitarity due to two-meson intermediate states. Analytical expressions for the phases of the two-loop form factors of the K\pm -> pi^+ pi^- e^\pm nu_e channel are given, allowing one to connect the difference of form-factor phase shifts measured experimentally (out of the isospin limit) and the difference of S- and P-wave pi-pi phase shifts studied theoretically (in the isospin limit). The isospin-breaking correction consists of the sum of a universal part, involving only pi-pi rescattering, and a process-dependent contribution, involving the form factors in the coupled channels. The dependence on the two S-wave scattering lengths a_0^0 and a_0^2 in the isospin limit is worked out in a general way, in contrast to previous analyses based on one-loop chiral perturbation theory. The latter is used only to assess the subtraction constants involved in the dispersive approach. The two-loop universal and process-dependent contributions are estimated and cancel partially to yield an isospin-breaking correction close to the one-loop case. The recent results on the phases of K^\pm -> pi^+ pi^- e^\pm nu_e form factors obtained by the NA48/2 collaboration at the CERN SPS are reanalysed including this isospin-breaking correction to extract values for the scattering lengths a_0^0 and a_0^2, as well as for low-energy constants and order parameters of two-flavour ChPT.Comment: 48 pages, 7 figure

    The pionic beta decay in chiral perturbation theory

    Get PDF
    Within the framework of chiral perturbation theory with virtual photons and leptons, we present an updated analysis of the pionic beta decay including all electromagnetic contributions of order e**2 p**2. We discuss the extraction of the Cabibbo-Kobayashi-Maskawa matrix element |Vud| from experimental data. The method employed here is consistent with the analogous treatment of the Kl3 decays and the determination of |Vus|.Comment: 8 pages, 1 figure, latex file, uses EPJC macro

    V0 particle production studies at LHCb

    Get PDF
    Although QCD is firmly established as the fundamental theory of strong interactions, the fragmentation process from partons into hadrons is still poorly understood. Phenomenological models tuned to Tevatron data show significant differences when extrapolated to LHC energies. The hadronization process can be probed at the LHC by studying V0 production, i.e. the production of KS mesons and Lambda hyperons. The LHCb experiment, with a rapidity range complementary to that of the other LHC detectors, offers a particularly interesting environment, covering the forward region where the existing models are very tunable but lack predictive power. The first 100 millions minimum bias events at LHCb will already provide a high-statistics and high-purity V0 sample. Measurements will include differential cross sections and production ratios for different strange particles as a function of rapidity and transverse momentum. The analysis can naturally be extended to cover heavier hyperons as well, and eventually lead, with larger data sets obtained with a J/psi trigger, to b-baryon spectroscopy with J/psi-hyperon final states

    Chiral Perturbation Theory with Virtual Photons and Leptons

    Get PDF
    We construct a low-energy effective field theory which allows the full treatment of isospin-breaking effects in semileptonic weak interactions. To this end, we enlarge the particle spectrum of chiral perturbation theory with virtual photons by including also the light leptons as dynamical degrees of freedom. Using super-heat-kernel techniques, we determine the additional one-loop divergences generated by the presence of virtual leptons and give the full list of associated local counterterms. We illustrate the use of our effective theory by applying it to the decays pi -> l nu_{l} and K -> l nu_{l}.Comment: 22 pages, no figure
    • 

    corecore